The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Three-dimensional (3D) freehand ultrasound (US) reconstruction without a tracker can be advantageous over its two-dimensional or tracked counterparts in many clinical applications. In this paper, we propose to estimate 3D spatial transformation between US frames from both past and future 2D images, using feed-forward and recurrent neural networks (RNNs). With the temporally available frames, a further multi-task learning algorithm is proposed to utilise a large number of auxiliary transformation-predicting tasks between them. Using more than 40,000 US frames acquired from 228 scans on 38 forearms of 19 volunteers in a volunteer study, the hold-out test performance is quantified by frame prediction accuracy, volume reconstruction overlap, accumulated tracking error and final drift, based on ground-truth from an optical tracker. The results show the importance of modelling the temporal-spatially correlated input frames as well as output transformations, with further improvement owing to additional past and/or future frames. The best performing model was associated with predicting transformation between moderately-spaced frames, with an interval of less than ten frames at 20 frames per second (fps). Little benefit was observed by adding frames more than one second away from the predicted transformation, with or without LSTM-based RNNs. Interestingly, with the proposed approach, explicit within-sequence loss that encourages consistency in composing transformations or minimises accumulated error may no longer be required. The implementation code and volunteer data will be made publicly available ensuring reproducibility and further research.
translated by 谷歌翻译
Artificial Intelligence (AI) is having a tremendous impact across most areas of science. Applications of AI in healthcare have the potential to improve our ability to detect, diagnose, prognose, and intervene on human disease. For AI models to be used clinically, they need to be made safe, reproducible and robust, and the underlying software framework must be aware of the particularities (e.g. geometry, physiology, physics) of medical data being processed. This work introduces MONAI, a freely available, community-supported, and consortium-led PyTorch-based framework for deep learning in healthcare. MONAI extends PyTorch to support medical data, with a particular focus on imaging, and provide purpose-specific AI model architectures, transformations and utilities that streamline the development and deployment of medical AI models. MONAI follows best practices for software-development, providing an easy-to-use, robust, well-documented, and well-tested software framework. MONAI preserves the simple, additive, and compositional approach of its underlying PyTorch libraries. MONAI is being used by and receiving contributions from research, clinical and industrial teams from around the world, who are pursuing applications spanning nearly every aspect of healthcare.
translated by 谷歌翻译
为了实现良好的性能和概括性,医疗图像分割模型应在具有足够可变性的大量数据集上进行培训。由于道德和治理限制以及与标签数据相关的成本,经常对科学发展进行扼杀,并经过对有限数据的培训和测试。数据增强通常用于人为地增加数据分布的可变性并提高模型的通用性。最近的作品探索了图像合成的深层生成模型,因为这种方法将使有效的无限数据生成多种多样的数据,从而解决了通用性和数据访问问题。但是,许多提出的解决方案限制了用户对生成内容的控制。在这项工作中,我们提出了Brainspade,该模型将基于合成扩散的标签发生器与语义图像发生器结合在一起。我们的模型可以在有或没有感兴趣的病理的情况下产生完全合成的大脑标签,然后产生任意引导样式的相应MRI图像。实验表明,Brainspade合成数据可用于训练分割模型,其性能与在真实数据中训练的模型相当。
translated by 谷歌翻译
前庭造型瘤(VS)通常从内耳生长到大脑。它可以分为两个区域,分别对应于内耳管内或外部。外部区域的生长是决定疾病管理的关键因素,其次是临床医生。在这项工作中,提出了将细分分为内部/优质零件的VS分割方法。我们注释了一个由227个T2 MRI实例组成的数据集,对137名患者进行了纵向获得,不包括术后实例。我们提出了一种分阶段的方法,第一阶段进行整个肿瘤分割,第二阶段使用T2 MRI以及从第一阶段获得的掩码进行了术中/极度分割。为了提高预测的肉类边界的准确性,我们引入了特定于任务的损失,我们称之为边界距离损失。与直接仪内分割任务性能(即基线)相比,评估了该性能。我们所提出的方法采用两阶段方法和边界距离损失,分别达到0.8279+-0.2050和0.7744+-0.1352,分别为室外和室内室内区域,显着提高了基线,这给出了0.7939+的骰子得分-0.2325和0.7475+-0.1346分别用于室外和室内区域。
translated by 谷歌翻译
从药物研究到解剖模型,腹部腹部登记具有各种应用。然而,由于人类腹部的形态异质性和可变性,它仍然是一个充满挑战的应用。在为此任务提出的各种注册方法中,概率位移注册模型通过比较两个图像的点的特征向量来估计点子集的位移分布。这些概率模型具有信息性和健壮性,同时允许设计大量位移。由于位移分布通常是在点子集(我们称为驾驶点)上估算的,因此由于计算要求,我们建议在这项工作中学习驾驶点预测指标。与先前提出的方法相比,以端到端方式优化了驾驶点预测变量,以推断针对特定注册管道定制的驾驶点。我们评估了我们的贡献对与不同模式相对应的两个不同数据集的影响。具体而言,我们比较了使用驱动点预测器或其他2种标准驾驶点选择方法之一时,比较了6种不同概率位移登记模型的性能。提出的方法改善了12个实验中的11个。
translated by 谷歌翻译
在这项工作中,我们考虑了成对的跨模式图像注册的任务,这可能会受益于仅利用培训时间可用的其他图像,而这些图像从与注册的图像不同。例如,我们专注于对准主体内的多参数磁共振(MPMR)图像,在T2加权(T2W)扫描和具有高B值(DWI $ _ {high-b} $)的T2加权(T2W)扫描和扩散加权扫描之间。为了在MPMR图像中应用局部性肿瘤,由于相应的功能的可用性,因此认为具有零B值(DWI $ _ {B = 0} $)的扩散扫描被认为更易于注册到T2W。我们使用仅训练成像模态DWI $ _ {b = 0} $从特权模式算法中提出了学习,以支持具有挑战性的多模式注册问题。我们根据356名前列腺癌患者的369组3D多参数MRI图像提出了实验结果图像对,与注册前7.96毫米相比。结果还表明,与经典的迭代算法和其他具有/没有其他方式的经典基于测试的基于学习的方法相比,提出的基于学习的注册网络具有可比或更高准确性的有效注册。这些比较的算法也未能在此具有挑战性的应用中产生DWI $ _ {High-B} $和T2W之间的任何明显改进的对齐。
translated by 谷歌翻译
人类评分是分割质量的抽象表示。为了近似于稀缺专家数据的人类质量评级,我们训练替代质量估计模型。我们根据Brats注释方案评估复杂的多级分割问题,特别是神经胶质瘤分割。培训数据以15位专家神经放射科学家的质量评级为特征,范围从1到6星,用于各种计算机生成和手动3D注释。即使网络在2D图像上运行并使用稀缺的训练数据,我们也可以在与人类内部内可靠性相当的错误范围内近似分段质量。细分质量预测具有广泛的应用。虽然对分割质量的理解对于成功分割质量算法的成功临床翻译至关重要,但它可以在培训新的分割模型中发挥至关重要的作用。由于推断时间分裂,可以直接在损失函数中或在联合学习设置中作为完全自动的数据集策划机制。
translated by 谷歌翻译
事实证明,深度卷积神经网络在语义分割任务中非常有效。引入了最流行的损失功能,以提高体积分数,例如Sorensen骰子系数。根据设计,DSC可以解决类不平衡;但是,它不能识别类中的实例不平衡。结果,大型前景实例可以主导次要实例,并且仍然产生令人满意的Sorensen骰子系数。然而,错过实例将导致检测性能不佳。这代表了诸如疾病进展监测等应用中的一个关键问题。例如,必须在多发性硬化症患者的随访中定位和监视小规模病变。我们提出了一个新型的损失功能家族,绰号斑点损失,主要旨在最大化实例级检测指标,例如F1得分和灵敏度。 BLOB损失是针对语义分割问题而设计的,其中实例是类中连接的组件。我们在五个复杂的3D语义分割任务中广泛评估了基于DSC的斑点损失,这些任务具有明显的实例异质性,从纹理和形态上讲。与软骰子损失相比,我们的MS病变改善了5%,肝肿瘤改善了3%,考虑F1分数的显微镜细分任务平均提高了2%。
translated by 谷歌翻译
医学图像分割的深度学习模型可能会出乎意料地且出乎意料地失败,而与训练图像相比,在不同中心获得的病理案例和图像,标签错误违反了专家知识。此类错误破坏了对医学图像细分的深度学习模型的可信赖性。检测和纠正此类故障的机制对于将该技术安全地转化为诊所至关重要,并且可能是对未来人工智能法规(AI)的要求。在这项工作中,我们提出了一个值得信赖的AI理论框架和一个实用系统,该系统可以使用后备方法和基于Dempster-Shafer理论的失败机制增强任何骨干AI系统。我们的方法依赖于可信赖的AI的可行定义。我们的方法会自动放弃由骨干AI预测的体素级标签,该标签违反了专家知识,并依赖于这些体素的后备。我们证明了拟议的值得信赖的AI方法在最大的报告的胎儿MRI的注释数据集中,由13个中心的540个手动注释的胎儿脑3D T2W MRI组成。我们值得信赖的AI方法改善了在各个中心获得的胎儿脑MRI和各种脑异常的胎儿的最先进的主链AI的鲁棒性。
translated by 谷歌翻译